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Abstract

This master’s thesis deals with the fault diagnostics of rolling element bearing — namely
types of faults and determination of the fault frequency known as ball pass frequency (BPF).
Furthermore, the nonstationary bearing fault signals database was created for experimental
purposes. This database is based on the required parameters. Such parameters were obtained
by analyzing real bearing fault signals. The frequency analysis using Short-time Fourier trans-
form, which time-related output is well known as the Spectrogram, has been done with gener-
ated signals from the created database. For the purposes of determining the parameters of the
Spectrogram, a method called Kurtogram was used. The outputs of the frequency analysis
using Spectrogram were compared to the outputs of the frequency analysis method known as
the Fourier-based Synchrosqueezing Transform.

Keywords: Rolling element bearing, nonstationary, signal, fault, database, ballpass fre-
quency, spectrogram, kurtogram, Fourier-based Synchrosqueezing Transform

Abstrakt

Tato diplomová práce se zabývá diagnostikou poruch valivých ložisek - konkrétně jednotlivými
typy poruch a určováním frekvence poruch známou jako ballpass frekvence (BPF). Dále
byla pro experimentální účely vytvořena databáze nestacionárních signálů vad ložisek. Tato
databáze je založena na požadovaných parametrech reálných signálů vad ložisek. Tyto parame-
try byly získány z analýzy reálných nestacionárních signálů. Frekvenční analýza pomocí
krátkodobé Fourierovy transformace, jejíž časově závislý výstup je dobře známý jako spek-
trogram, byla provedena s vygenerovanými signály z vytvořené databáze. Pro účely stanovení
parametrů spektrogramu byla použita metoda zvaná kurtogram. Výstupy frekvenční analýzy
pomocí spektrogramu byly porovnány s výstupy metody frekvenční analýzy známé jako
Fourier-based Synchrosqueezing Transform.

Klíčová slova: Ložisko, nestacionární, signál, porucha, databáze, ballpass frekvence, spek-
trogram, kurtogram, Fourier-based Synchrosqueezing Transform
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Chapter 1

Introduction

Due to the fact that bearings are an indispensable machine part, it is also essential to monitor
the condition of the bearing to prevent failure of part of a machine or even the entire machine
system. This part of engineering industry is subject to a constant process of innovation in
order to maximize the life cycle of a bearing.

Many types of wear are noted during the use of the bearing. Certain types of wear generate
vibration pulses, which are detectable by sensors designed for a given type of detection. Based
on this phenomenon, many methods have emerged to approach the evaluation of such scanned
data in order to detect or specify the nature of the fault.

This work focused not only on fault detection but also on the generation of non-stationary
signals containing certain types of bearing faults. Nonstationarity can be modeled by a non-
constant speed of bearing rotation. The necessary parameters for generating fault bearing
signals should be obtained from the analysis of real signals so that these generated outputs
correspond to some extent to reality. For the purposes of experiments, it is appropriate to
create a database of non-stationary bearing fault singals.

It is important to mention that this work was created at the same time as the work [5].
It is, therefore, possible that in some cases, the works overlap slightly, but throughout the
elaboration, an effort was made to distinguish these works not only by the assignment but
by the overall approach to the solution. It should also be mentioned that the author is aware
that Chapter 4 contains both the theory of methods used and practical results. This approach
is not common but has been used to maintain the continuity of ideas and the compactness of
the work.

The whole work is divided into 6 chapters, where each chapter has its own subchapters
for better orientation in the text.

In the introductory chapter, the reader is acquainted with the issue of bearing failures.
After a slightly theoretical introduction, the most common types of bearing failures are ana-
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lyzed. At the end of the chapter, important mathematical relationships for determining fault
frequencies are mentioned.

The following chapter 3 describes the physical properties of the generated vibration pulses.
The created signal generator generates non-stationary fault bearing signals with the occur-
rence of inner/outer race fault. The emergence of the Non-stationary Bearing Fault Signal
Database is considered an important output of this chapter.

Chapter 4 describes in detail the created fault bearing detection process. The methods used
are described. The parameter values used are based on analyzes and practical justifications.

In the penultimate chapter, a test of the signal analysis algorithm is performed on signals
from the Non-stationary Bearing Fault Signal Database. The results lead to a comparison of
the two methods used, namely spectrogram and fsstgram.

The last chapter summarizes the main findings of the work and discusses the possible
expansion of the work in the future.
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Chapter 2

Mechanical Bearings and Rolling
Element Bearing Faults

A bearing is a machine element in which another part (such as a ball or a roller) turns or
slides to reduce friction during the machine parts’ mutual rotating or sliding movement. It
also constrains relative motion to only the desired motion. For example, the bearing design
may provide free linear movement of the moving part or free rotation about a fixed axis. The
term "bearing" is derived from the verb "to bear" [6] - bearing being a machine element that
allows one part to bear (i.e., to support) another.

It is considered one of the most widely used machine parts, and thus it is required to
be fully functional within its life cycle. Their failure is one of the most frequent reasons for
machine breakdown [3].

The invention of the rolling bearing dates back to antiquity, when wooden rollers were
used for bearing an object while it was moved. Around 1500 AD Leonardo da Vinci described
a type of ball bearing in his design for a helicopter. The first patent is issued for Timken
Tapered roller bearings in 1898. The modern, self-aligning design of ball bearing is attributed
to Sven Wingquist of the SKF ball-bearing manufacturer in 1907 [7].

2.1 Types of bearings

There are many types of bearings which can be used in a variety of application. The mod-
ern developement of bearings is focused on reducing friction, increase bearing load, increase
momentum build-up, and speed.
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The main types of bearings are:

• Plain bearing - the simplest type of bearing, which contains only the bearing surface
and no rolling elements. It usually has a rubbing surface with lubricant;

• Rolling element bearing - a bearing which carries a load by placing rolling elements
(such as balls or rollers) between two bearing rings called races;

– Ball bearing - rolling elements are spherical balls;

– Roller bearing - rolling elements are cylindrical, taper or spherical rollers;

• Jewel bearing - a plain bearing in which a metal spindle turns in a jewel-lined pivot
hole. It is usually used in mechanical watches;

• Fluid bearing - a bearing in which the load is supported by a thin layer of rapidly
moving pressurized liquid or gas between the bearing surfaces;

• Magnetic bearing - a type of bearing that supports a load using magnetic levitation;

• Composite bearing - plain bearing shape with PTFE liner on the interface between
bearing and shaft with a laminated metal backing. PTFE acts as a lubricant.

According to the direction of the force applied, the bearings are divided into:

• Radial - perpendicular to the bearing tracks;

• Axial - longitudinally with bearing tracks [3].

Figure 1: Rolling Element Bearing. The balls fit well into the deep grooves, enabling the
bearing to support axial loads in both directions, in addition to radial loads. The bearing
illustrated here has a single row of balls [1].

4



The level of friction is an important index of efficiency in bearings. By reducing friction,
we want to reduce the level of weariness, to extended usage at high speeds, and to avoid
overheating and premature failure of the bearing. This can be achieved by several factors
such as:

• Shape - gains advantage usually by using balls or rollers;

• Material - each material has specific properties, and its usage depends on the method
of application;

• Fluid - a low viscosity fluid such as lubricants is used to keep the two solid parts from
touching;

• Fields - a magnetic field is used to keep the two solid parts from touching;

• Air pressure - air pressure is used a magnetic field is used to keep the two solid parts
from touching.

Oil, grease, or solid lubricants are used for reducing friction[8]. A specific type of lubricant
depends on the pressure of a load and the ambient temperature.

2.2 Rolling element bearing faults

As it was mentioned rolling element bearings are widely used machine elements. Thus, it is
important to do maintenance tasks to prevent bearing failure or failure of the whole machinery
system. Due to metal-to-metal contact, it is easy to wear out for rolling element bearings.
That leads to failure of a specific part of the bearing, such as inner or outer race or rolling
element. The bearing can fail for several reasons: inadequate lubrication (too much or too
little lubricant), contaminated lubricant, overload, improper handling or assembly, sudden
temperature changes, age (surface fatigue), external vibrations, manufacturing defects, or
contamination by dirt particles [9].

Even the method of storage affects the proper functioning of the bearings. For example,
the service life of bearings in one application was extended dramatically by changing how the
bearings were stored before installation and use. Vibrations during storage caused lubricant
failure even when the only load on the bearing was its weight [10, 11].

Despite operating correctly, rolling element bearings will eventually fail as a result of a sur-
face fatigue phenomenon. Rolling element bearing surface fatigue is characterized by spalling.
This failure is characterized as surface damage. After a while, the particles of the material
start to break off. This creates cracks on the surface, which propagate into the material. As
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the rolling elements pass through the cracks, material particles break off, contaminating the
entire bearing system. Spalling leaves cavities at contact surfaces with a depth of 20 µm to
100 µm.

Another type of rolling bearing failure is so-called pitting. Due to the higher load than the
roller bearing is designed, cracks are formed inside the material. These cracks propagate to
the surface over time. As the rolling elements pass through the cracks, material particles break
off, contaminating the entire bearing system. Pitting appears as shallow craters at contact
surfaces with a depth of, at most, the thickness of the work-hardened layer (approximately
l0 µm) [11].

Both of these types of faults produce acoustic/vibrating pulses that are detectable by, for
example, a microphone or an accelerometer. Following proper analysis of these signals can
identify the specific type of fault, which indicates what part of the bearing is damaged.

2.3 Vibrations

A mechanical motion that repeats itself after an interval of time is called vibration or os-
cillation. Vibration refers to mechanical oscillations about an equilibrium point (Figure 2).
Vibrations usually are an undesirable element during the operation. They are wasting energy
and creating an unwanted sound which is considered noise.

When the rolling elements of a bearing get in contact with the surface that is damaged, an
impulse is generated. This type of vibration signal occurs periodically, producing a harmonic
series with a fundamental frequency that depends on the material properties of the surface
[9].

Figure 2: The vibration signal is visualized as a simple harmonic motion.
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We recognize 3 types of vibrations:

• Free vibration is the oscillation of the system without the action of external forces,
i.e., the system is set out of balance, released, and left in motion without excitation.
The mechanical system vibrates at one or more of its natural frequencies and damps
down to motionlessness.

• Forced vibration is when a time-varying disturbance (load, displacement or velocity)
is applied to a mechanical system.

• Damped vibration occurs when the energy of a vibrating system is gradually dis-
sipated by friction and other resistances; the vibrations are said to be damped. The
vibrations gradually reduce or change in frequency or intensity and the system rests in
its equilibrium position. Damped vibration is a type of vibration which occurs at rolling
element bearing fault signals.

Sources of vibrations in Rotating Machine element are:

• Misalignment of couplings, bearings and gears,

• Unbalance of rotating components,

• Looseness,

• Degradation of rolling element bearings,

• Gear wear,

• Eccentricity of rotating components such as “v” belt pulleys or gears,

• Bent shaft,

• Resonance,

• Electrical problems in motors.[12]

2.4 Bearing fault frequencies

Due to the reasons mentioned in previous subchapters, every damaged rolling bearing gen-
erates vibrations during its operation in the machine. The vibration signal is converted to a
digital signal by sensors (i.e., accelerometers) located on the bearing. In the signal, we are able
to see pulses that are periodically repeated depending on the shaft frequency, fault location,
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and geometry of a bearing. This frequency of occurrences of vibration pulses is called fault
frequency. We distinguish four types of failures according to their location in the bearing as
a fault of the inner or outer race, rolling element (ball or roller), or bearing cage.

Figure 3: Rolling element bearing with localized inner race fault [2]. A vibration sensor is
shown on the outside of the bearing. Subsequently, the course of these vibrations over time
is also illustrated. od is the outter bearing diameter, D is the pitch diameter, id is the inner
bearing diameter, φ is the bearing contact angle, and d is the ball diameter.

We are able to theoretically calculate fault frequencies that mean the rate of occurrences
of the pulses generated by rolling elements passing over the place with a defect. These fault
frequencies are generally masked in the low-frequency region due to the presence of deter-
ministic components and noise from other components in the system, such as gears, blades,
unbalance, misalignment, electrical noise, etc. The actual ball pass frequencies are generally
1-2 % in deviation from the theoretically calculated frequencies due to the slippage of the
rolling elements as a result of the variation of the load angle [13, 3].

By the part of the bearing that is affected by the fault, we are able to determine four
types of fault frequencies [3, 13]:

• BPFO - Ballpass frequency, outer race

BPFO = nfr
2

(
1− d

D
cosφ

)
[Hz] (2.1)
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• BPFI - Ballpass frequency, inner race

BPFI = nfr
2

(
1 + d

D
cosφ

)
[Hz] (2.2)

• FTF - Fundamental train frequency, also known as cage speed

FTF = fr
2

(
1− d

D
cosφ

)
[Hz] (2.3)

• BSF/RSF - Ball (roller) spin frequency

BSF = D

2d

[
1−

(
d

D
cosφ

)2]
[Hz] (2.4)

where fr is the shaft frequency speed, n is the number of rolling elements, d is the ball
diameter (see Figure 3) , D is the pitch diameter (see Figure 3) , and φ is the angle of the
load from the radial plane. In non-stationary operating conditions, the shaft speed fr varies
over time.

It is good to be noted that the ball spin frequency (BSF) is the frequency with which the
fault strikes the same race (inner or outer) so that in general, there are two pulses per basic
period. Thus the even harmonics of BSF are often dominant, in particular in envelope spectra
[3].

If the dimensions of the monitored bearings are not known, but only the number of
rolling elements is known, it is possible to modify the formulas ((2.1) - (2.4)). However, this
simplification results in a loss of calculation accuracy [8].

• BPFO - Ballpass frequency, outer race

BPFO =
(
n

2 − 1, 2
)

60fr [Hz] (2.5)

• BPFI - Ballpass frequency, inner race

BPFI =
(
n

2 + 1, 2
)

60fr [Hz] (2.6)

• FTF - Fundamental train frequency, also known as cage speed

FTF =
(1

2 −
1, 2
n

)
60fr [Hz] (2.7)

• BSF/RSF - Ball (roller) spin frequency

BSF = n

2

(
n

2 − 1, 2
)

60fr [Hz] (2.8)
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As Figure 4 shows, there is a clearly visible presence of amplitude modulation in the inner
race fault signal and rolling element fault signal. The frequency of the modulation signal is
equal to the shaft rotation frequency fr. On the other hand, the outer race fault signal is not
amplitude modulated at all. Such phenomenon will be discussed further in the next chapter.
This trend is well seen from the envelope signal.

Figure 4: Typical signals and envelope signals from local faults in rolling element bearings [3].
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Chapter 3

Generating Fault Signals

3.1 Fault Signal Generator

As mentioned in the previous chapter, bearing failures generate vibrational pulses. These
pulses can be understood as a simplified model of damped oscillations. An important charac-
teristic of these oscillations is that the frequencies of the bearing fault signals are distributed
in the low-frequency band as well as in the high-frequency band. In the low-frequency band
(f < 1000 Hz), the fault frequencies are present. On the other hand, the high-frequency band
(f = 1000 ∼ 10000 Hz) includes the frequency of the oscillation [13, 14].

The whole model of the signal generator and subsequent analysis was approached as a
discrete system. The Matlab® development environment was used as a tool for the implemen-
tation of all operations.

3.1.1 Damped Oscillation Model

According to [15], the model of damped oscillations is determined by a linear ordinary differ-
ential equation of the 2nd order

ÿ(t) + 2ζω0ẏ(t) + ω2
0y(t) = u(t). (3.1)

For normalization purposes, it is advantageous to use

ÿ(t) + 2ζω0ẏ(t) + ω2
0y(t) = ω2

0u(t), (3.2)

where ζ is the relative damping of the system and ω0 is the natural frequency of oscillations.
We understand the signals generated by bearing defects as a model of underdamping system.
For such a system is ζ < 1. And the solution of the characteristic equation has two complex
conjugate roots
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s1,2 = σp ± jωp, (3.3)

where ωp is the frequency of damped oscillations and σp < 0 is the damping of these
oscillations.

For the underdamping system is ω0 > σp, and therefore the system oscillates with damped
oscillations of ωp frequency with exponential decreasing amplitude. Such a system is defined
by a transfer function such as

h(t) = ω0√
1− ζ2 e

σptsin(ωpt) (3.4)

for t > 0.

Due to the lack of suitable databases with the necessary non-stationary signals for this
work’s purposes, only one available database has been chosen with non-stationary signals -
"Bearing vibration data collected under time-varying rotational speed conditions" [16]. Unfor-
tunately, the data from this database was contaminated by severe noise, so it was not possible
to determine all the necessary parameters. The parameter that could be determined using
the kurtogram method was the impulse resonance frequency fc = ωp

2π [Hz].
The time constant τ = − 1

σp
[s] was determined in cooperation with the author of the work

[5]. This parameter was determined by analyzing the "Condition Based Maintenance Fault
Database for Testing of Diagnostic and Prognostics Algorithms" by MFPT [17]. These two
values were set as constants with the following values:

• fc = 8000 Hz,

• τ = 0.0005 s.

The parameter τ was chosen as a constant because, in case of its variation of its value,
the pulses could overlap at high-frequency shaft speeds. The same parameters were used in
[13] as well. This work primarily focuses on the creation of non-stationary signal database
and subsequent analysis algorithm.

After the determination of the constants fc and τ , we can perform subsequent mathemat-
ical operations to calculate the remaining parameters of the system transfer function. Thus
we can perform

ωp = 2πfc [rad/s] (3.5)

σp = −1
τ

[rad/s] (3.6)
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where ωp is the impulse angular frequency. The natural frequency of oscillations ω0 is
determined by calculating the Pythagorean theorem

ω0 =
√
ω2
p + σ2

p [rad/s] (3.7)

The last parameter to determine is the damping ratio ζ, which we obtain by the following
equation.

ζ = σp
ω0

[-] (3.8)

Figure 5: Modeling of one damped pulse.

Figure 5 shows the model of damed oscillation. The time constant τ is equal to the
intersection of the x-axis and the tangent to the exponential damping. The value of 5τ is
shown here to illustrate the 99.33 % decrease of the system vibrations. This value is important
for determining the pulse length to ensure that the pulses do not interfere with each other at
variable shaft frequency speeds.
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3.1.2 Non-stationary operating conditions

Signal modeling under non-stationary conditions was performed by changing the shaft speed
fr over time. This phenomenon resulted in a time change of the fundamental frequencies of the
fault (see equations 2.1 - 2.4). In addition, this resulted in different spacing between pulses. In
this work, a faulty bearing under ramp-down speed was constructed. A speed-down scenario
is characterized by decreasing shaft speed and pulses amplitude over time. The algorithm for
generating such a signal is described by the following equation

s(t) =
N∑
m=1

Ame
− t
τ sin(2πfct) (3.9)

where N is the signal length, tε〈0, T0〉 where T0 = 1
BPF , where BPF is the fundamental

frequency of a specific fault type (see equations (2.1) - (2.4)) which depends on the change of
the shaft frequency fr. Decreasing amplitude Am over time for the speed-down case is defined
as

Am = A

(
N

fs
− ηtm

)
(3.10)

where A and η are constants. A defines the amplitude factor of the first pulse and is
equal to A = 1

T where T = N
fs
. η defines the factor by how much the amplitude of the last

pulse decreases compared to the first pulse amplitude (0 ≤ η ≤ 1) [18]. fs is the sampling
frequency and tm is the occurence time of the mth impulse (m = 1, 2, ...) which should meet
the condition tm ≤ T .

Typical values that were used in the simulation:

Constant Value Units Meaning
fc 8000 Hz impulse resonance frequency
fs 20000 Hz sampling frequency
τ 0.0005 s time costnatn
η 0.3 - amplitude decreasing factor

Table 3.1: Table of constants used in generating non-stationary signals.
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Figure 6: Simulated non-stationary signal under time-varying speed-down shaft speed.

3.2 Inner race fault

In most cases, the inner ring of the bearing is firmly connected to the rotating shaft. The
vibration sensor is located on the outer ring of the bearing (see Figure 3), which is fixed. Due
to this constellation, when the inner ring of the bearing rotates relative to the sensor, the
resulting signal is amplitude modulated by the shaft rotation frequency fr [9].

The frequency of pulses occurrences depends on the time-varying fundamental frequency
BPFI (see equation (2.2)).

In the case of linearly time-varying shaft rotation frequency fr, it is suitable to use a
linear chirp signal as the modulation signal. The instantaneous frequency f(t) of linear
chirp is defined as follows

f(t) = ct+ f0 (3.11)

where f0 is the starting frequency (t = 0) and c is the chirp rate equal to
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c = f1 − f0
T

(3.12)

where f1 is the final frequency (t = N
fs
), T is the time required to sweep from f0 to f1.

The modulation signal as a time-domain function for a sinusoidal linear chirp is described
as

m(t) = M sin
[
φ0 + 2π

(
c

2 t
2 + f0t

)]
(3.13)

where M is the amplitude of modulation, φ0 is the initial phase (t = 0) [19].
Subsequent amplitude modulation is given by mathematical equation

y(t) = [1 +mim(t)]s(t) (3.14)

where mi is the modulation index mi = M
Am

[20].
mi = 0.95 was used in the next picture (Figure 7) and signal generator.

Figure 7: Generating Inner race fault. a) s(t) = sequence of impulses, b) m(t) = modulating
signal (linear sine chirp), c) y(t) = generated inner race fault.

16



3.3 Outer race fault

Due to the location of the vibration sensor on the outside of the bearing, which does not move,
no amplitude modulation is present in the outer race fault signal. This makes generating a
signal of this type of error more simple than in the case of the inner race fault.

The frequency of pulses occurrences depends on the time-varying fundamental frequency
BPFO (see equation 2.1).

Figure 8: Comparison between Inner Race Fault signal (top) and Outer Race Fault signal
(bottom).

The figure 8 illustrates that the signals do not only differ in the presence of amplitude
modulation but also in the fundamental frequency value that depends on the fault type (see
equations (2.1) and (2.2)). For both signals, the time change of the shaft speed frequency fr
is the same.
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3.4 Jitter, deterministic components and additive noise

Due to the smearing effect of the rolling ball element are theoretically calculated fundamental
frequencies 1 − 2% in deviation from the actual fundamental ball pass frequencies. This
phenomenon is called jitter [21].

The information about fundamental frequency is located in the low-frequency band. How-
ever, there are also present deterministic components and noise in this band that mask this
information. Such interferences come from other components in the system such as gears,
blades, unbalance, misalignment, electrical noise, etc [13].

Deterministic components were generated as two linear chirps. One with the same
frequency change as the shaft speed frequency fr and the second with double the time-varying
shaft frequency speed with half the amplitude of the first chirp deterministic component.

Additive noise was generated as Additive white Gaussian noise (AWGN) with defined
signal-to-noise ratio (SNR), which indicates the degree of noise presence in the signal [13].

Figure 9: Illustrating of a signal contaminated by two deterministic components and additive
noise with defined signal-to-noise ratio (in the figure: SNR = 25 dB).
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3.5 Non-stationary Bearing Fault Signal Database

This chapter deals with the created databases of non-stationary bearing fault signals. All
signals were generated using the signal generator discussed in the previous chapters 3.1 - 3.4.

The database was designed primarily for the purpose of capturing the non-stationary
course of the bearing failure signal. For this reason, more bearing types were not considered.
A shaft speed deceleration scenario was considered to capture non-stationarities in the signals.
Two described faults were selected - namely Inner race fault and Outer race fault. Another
important variable was the Signal-to-Noise Ratio (SNR) parameter. All generated signals have
a duration of 3 seconds.

At the end of this chapter, a table with characteristic parameters of signals from the
created database of non-stationary bearing fault signals is displayed.

3.5.1 Bearing type

The used bearing type is the same as in the described stationary database [17]. It is a ball
bearing from the Nice Ball Bearings company, which has the following parameters:

• ball diameter d = 0.5969 cm,

• pitch diameter D = 3.1623 cm,

• number of rolling elements n = 8,

• contact angle φ = 0.

These listed bearing parameters are necessary for the calculation of the fault frequencies
(see equations (2.1)-(2.4)).

3.5.2 Shaft speed frequency

Non-stationary conditions were modeled by changing the value of the shaft speed fr over
time. The change of the frequency value is given by the parameters fstart and fstop, which
define the initial and final value of the change of the shaft speed frequency fr.

The suitability of choosing the value fstart depends on the fact that the resulting fault
frequency of the given fault type is not such that the pulses already interfere with each other.
Therefore, the limit value of fstart was selected, which was set to 40 Hz. This value is based
on the high-frequency speed of the Ingenuity helicopter, which took off on Mars on February
18, 2021, with a rate of 2400 RPM [22]. At this value, the condition of non-overlapping pulses
for both types of faults is fulfilled.

fstart takes values of 40, 30 and 20 Hz and fstop takes values of 15, 10 and 5 Hz.
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3.5.3 Signal-to-noise ratio

The range of SNR values is from 60 to 20 dB. For SNR values less than 20 dB, the kurtogram
method in signal analysis failed due to the presence of strong additive noise.

3.5.4 Output file naming system

For easy organization and orientation for users, the following system for determining the
name of individual sets of non-stationary bearing fault signals has been introduced. The
name format of the signal generator output signals is as follows:

faultType_fstart_fstop_T_SNR.mat.

where faultType is the type of bearing fault such as Inner/Outer race fault, fstart

defines the initial frequency of the shaft speed fr in Hz, fstop defines the frequency of the
shaft speed fr at the end of the signal, T is the duration of the signal in seconds and SNR

defines the SNR value in dB.
Let’s have a representative signal with the following parameters:

• fault type = Outer race fault,

• fstart = 30 Hz,

• fstop = 15 Hz,

• T = 3 s,

• SNR = 30 dB.

Then, the output signal of the signal generator will be named in the following form.

OUTER_30Hz_15Hz_3s_30.mat
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3.5.5 Meaning of variables in the output structure

The following table 3.2 describes the meaning of the individual variables, which are stored in
the output structure of the file with the *.mat extension.

Name of the variable Meaning

xw_out
bearing fault signal with deterministic
components and additive noise

fs sampling frequency [Hz]
fstart initial shaft speed frequency [Hz]
fstop final shaft speed frequency [Hz]

BPFM
time evolution of the fault frequency
during the whole signal

BPFIM
time evolution of the theoretically
calculated fault frequency of
the Inner race fault type [Hz]

BPFOM
time evolution of the theoretically
calculated fault frequency of
the Outer race fault type [Hz]

frM
time evolution of
the shaft speed frequency [Hz]

NiM
time evolution of
the period length between pulse [samples]

poziceM time occurrences of the pulses [samples]

Table 3.2: A table describing the meaning of the individual variables stored in the output file
of the signal generator.

3.5.6 Generated signals and their key properties

The following tables (6.1 and 6.2) located in the attachment section describes the generated
signal database with the basic descriptive parameters of the signals.
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Chapter 4

Signal Analysis

Signal analysis or digital signal processing is a field of electronic engineering dealing with
analyzing, modifying, or synthesizing signals such as audio, video, or in the case of this work
- vibration signals. The roots of this scientific field are dated to the 17th century.

This chapter describes the idea of suggested analysis resulting in the algorithm to analyze
the generated non-stationary linear speed-down vibration signals of the bearing faults (namely
inner race fault and outer race fault). Since the field of analysis of non-stationary bearing fault
signals has the potential to be more explored, the implemented solution in this work is ready
for further possible modifications to improve the results.

The following block diagram (Figure 10) outlines the analysis procedure. The implemented
algorithm contains several specific methods, which will be described in more detail below, and
their outputs will be presented. Two main approaches were used in the analysis using:

• Short-time Fourier transform [23],

• Fourier Synchrosqueezed transform [24].

The ability of these two methods to solve the problem of fault detection is compared
and discussed. At the end of this chapter, a solution is outlined that goes beyond the limits
of this algorithm and attempts to detect the fault type. It is important to emphasize that
the scope of this work primarily seeks to detect a bearing fault, not to classify it. But the
potential of the generated data was used. Thus, not only the fault type is determined, but also
the development of the pulse period and the subsequent development of the shaft frequency
speed is determined.

The Matlab® development environment was used as a tool for the implementation of the
whole analysis.
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4.1 Block diagram

KURTOGRAM FILTER
SIGNAL 

SEGMENTATION
i = win:win:length(y[n])

?s(t,f)
SPECTROGRAM

/
FSST

PWELCH
+ THRESHOLD

INTEGRATION STORE IN VECTOR

SHAFT FREQUENCY 
SPEED

BPFI or BPFO?
DISTANCE 

BETWEEN PULSES

i = length(y[n])

NO

YES

x [n]

fc, bw

x [n] y [n]

yi [n]

yi [n]

f_low
f_high

f_low
f_high

[s, f, t]

BPFBPF

fault 
type

Figure 10: Block diagram describing the signal analysis algorithm for bearing fault detection.
x[n] is the input signal, fc is the central frequency of the oscillations, bw is the bandwidth,
y[n] is the filtered signal, yi[n] is the i-th segment of length = win, flow and fhigh are the
frequencies that define the band in which the spectrogram/fsstgram will be projected on the
timeline, s, f, t are the output parameters of the spectrogram/fsstgram and BPF is the Ball
pass frequency.

The input signal is filtered by a filter which parameters are determined by the output
parameters of the Kurtogram method [25]. Subsequently, this signal is segmented, and in
each segment of defined length = win, the Power spectral density (PSD) is calculated using
the Welch’s method [26]. The band in which the information about the vibration pulses is
contained is determined using the given threshold level applied to PSD. The spectral values
from this obtained band are then projected from the spectrogram/fsstgram to the time axis by
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summing the frequencies in the given band at a given time. After performing this operation,
we get a kind of envelope of vibrating pulses. We then integrate this signal from the given
threshold level. These values are gradually stored in a vector, in which we can then determine
the distance between the pulses, which indicates the value of the period 1

BPF [s]. From this
point, we are able to determine the similarity of the values of the identified period with the
theoretically calculated one using the given metric and thus determine the fault type. With
the knowledge of fault type, we are able to modify the formula (equations (2.1) and (2.2)) in
order to calculate the time-varying shaft speed frequency.

4.2 The Kurtogram

It is known from previous chapters that a damaged bearing generates vibrational pulses.
These pulses have the characteristic property of high impulsivity. Therefore, it is possible to
detect these pulses using appropriate methods even in the presence of additive noise.

It was recommended in the past to use the hammer tap testing to find bearing housing
resonances [3]. But from the moment it is possible to use the method of spectral kurtosis
or its two-dimensional representation kurtogram, we can analyze the data without reference
values.

4.2.1 Spectral kurtosis

Spectral kurtosis provides the information on which frequency bands contain the maximum
impulsivity signal. This method was first used in sonar systems in 1980s to detect impulsive
events in sonar singlas [25]. The spectral kurtosis extends the concept of kurtosis. Kurtosis
provides one global value about the impulsiveness of the signal and is defined as follows.

kurtosis =
1
N

∑N
n=1(xn − µx)4

1
N

∑N
n=1((xn − µx)2)2

− 3 (4.1)

where x is the analyzed signal, N is the number of samples of the signal x, µx is the mean
value of the signal x. The subtraction of 3 is used to enforce kurtosis = 0 in the case x is real
Gaussian.

On the other hand, the spectral kurtosis is the function of frequency and thus indicates how
the impulsiveness of a signal, if any, is distributed in the frequency domain [3]. This method
is derived from the Short-time Fourier transform method and thus it depends on the choice
of the STFT window length. The spectral kurtosis is given by the following mathematical
equation (equation 4.2).
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K(f) = 〈|X(t, f)|4〉
〈|X(t, f)2|2〉

− 2 (4.2)

where X(t, f) is the complex envelope of analyzed signal x. The subtraction of 2 is used
to enforce K(f) = 0 in the case X(t, f) is complex Gaussian [3].

4.2.2 The Kurtogram

Because the spectral kurtosis method is dependent on the definition of the STFT window
length, it is appropriate to bring this dependence into a two-dimensional representation called
the kurtogram. This can be understood as a cascade of spectral kurtosis values for different
lengths of STFT windows (see Figure 11).

This function was called in the Matlab® development environment as follows:

[KGRAM, F, W, fc, wc, bw] = kurtogram(x,fs,level);

• x is the input signal with specific fault type,

• fs is the sampling frequency (fs = 20000 Hz),

• level determines the level of window resolution to use, and therefore how many spectral
kurtosis cases to calculate (level = 6),

• KGRAM is the fast kurtogram of signal vector x represented as a matrix,

• F is the frequency vector for kurtogram,

• W is the window size vector for kurtogram,

• fc is frequency where the maximal spectral kurtosis is located,

• wc is window size where the maximal spectral kurtosis on the kurtogram is located,

• bw is suggested bandwidth for the optimal bandpass filter.
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Figure 11: Illustration of the output of the kurtogram function in the Matlab® development
environment. The warmer the color representation of the kurtogram, the higher the spectral
kurtosis value for a given window length. Y-axis reffers to the length of the window and X-axis
is the frequency axis.

Kurtogram method (see Figure 11) provides the key information such as central frequency
fc of a band, where the value of spectral kurtosis is the highest (Kmax) for a given length
of the STFT window. This center frequency should be around the center frequency of the
oscillations. Another significant output parameter is the bandwidth bw. Thanks to these two
parameters, we can successfully design a filter with which we can remove unwanted interference
and thus obtain a useful signal of the non-stationary course of vibration pulses in time.

26



4.3 Filtration and Signal segmentation

4.3.1 Filtration

Electronic filters remove unwanted frequency components from the applied signal, enhance
wanted ones, or both. In the case of this work, we want to remove deterministic components
and suppress the effect of additive noise in order to obtain the useful signal of vibrational
pulses. On the contrary, we want to avoid distortion of this useful signal.

After considering the possibilities of many types of approaches to filter design, it was
based on the conclusions of the thesis [27] that the most suitable type of filter in terms of
meeting the criteria and usability is the Butterworth IIR filter.

The Butterworth filter is characterized by the maximum flatness of the passband and, at
the same time, rolling off toward zero in the stopband. It is also referred to as a maximally
flat magnitude filter. This feature guarantees the minimum possible distortion of the useful
signal and, at the same time, avoids the amplification of higher harmonic components of
deterministic interference. For these reasons, we do not consider other types of IIR filters,
such as the Chebyshev filter, the Inverse Chebyshev filter, or the Cauer filter, which are
characterized by a certain ripple in the pass or stopband.

Filter design specifications were obtained using the kurtogram method. The outputs of
this method provide the information about the center frequency and bandwidth that we want
to maintain. The Butterworth filter was implemented through the following syntax.

[b,a] = butter(order,[fc-bw/2 fc+bw/2]/(fs/2));

y = filter(b,a,x);

• order is the filter order (order = 6),

• b,a are the transfer function coefficients,

• x is the input signal,

• y is the output signal (filtered signal).

A transfer function for a linear, time-invariant, causal digital filter can be expressed as a
transfer function in the Z-domain [28]:

H(z) = B(z)
A(z) = b0 + b1z

−1b2z
−2 + · · ·+ bNz

−N

1 + a1z−1 + a2z−2 + · · ·+ aMz−M
(4.3)

where the order of the filter is the greater of N or M , a and b are the filter transfer
function coefficients.
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The selected filter order was set to six. This filter order is a compromise between compu-
tational complexity and filter selectivity. For a larger filter order, the transition bandwidth
decreases, and thus the selectivity of the filter increases (see figure 12). This also guaran-
tees the filtering of higher harmonic components of deterministic interference. The output
parameters of the illustrated kurtogram lead to a high-pass filter. However, for example, for
a stationary type of bearing fault signal, the kurtogram generates parameters that lead to a
bandpass filter [5]. For this reason, the filtering algorithm is ready for this type of filter and
thus meets the requirements for selectivity.

The transfer function of the designed filter using the parameters obtained from the Kur-
togram method is displayed in the figure 12.

Figure 12: Illustration of the transfer function of the designed Butterworth filter with the
parameters obtained using the kurtogram method. Blue = Butterworth filter with order equal
to 6, red = Butterworth filter with order equal to 1.
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A comparison of the raw signal with the deterministic components and the output of the
designed filter withe the order equal to six can be seen in the figure 13. We can observe
successful filtering of low-frequency interference of deterministic components.

Figure 13: Figure showing a comparison of the time course of the raw signal (top) and the
filtered signal (bottom).

4.3.2 Signal segmentation

The output signal of the filter was then segmented into windows with a length of 2000 samples.
This value was determined from the analysis of the most dynamic signal from the created
database using the kurtogram method. For values less than 2000 samples, the kurtogram
method did not provide consistently accurate values. The consequence of such segmentation
was a reduction in the dynamics of non-stationary processes within a single window. The
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advantage of this approach was the possibility of checking the results for individual windows
and thus correctly optimizing the entire analysis process.

Figure 14: Display of the signal course within one segment with a length of 2000 samples.

4.4 Power Spectral Density

The power spectrum of a signal describes the distribution of power into frequency compo-
nents composing that signal [29]. The graphical representation of this method is called the
periodogram. The calculation of the power spectral density was performed in this work using
the Welch’s method.

Welch’s method computes a PSD for each segment and then averages these estimates
to produce the estimate of the power spectral density. Because the process supposed to be
wide-sense stationary and Welch’s method uses PSD estimates of different segments of the
time series, the smoothed periodograms represent approximately uncorrelated estimates of
the true PSD and averaging reduces the variability.
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The reason why the power spectral density calculation was used is that this step was
used to obtain information about the frequency band, where the information about the useful
signal is contained within the given window.

The cut-off frequencies of such a frequency band of interest were determined by the inter-
section of the set threshold and the power spectral density. The threshold was set at 3·mean
of power spectral density. This value is the result of compromising the noise resistance of the
analysis and determining the useful frequency band where the vibration pulses are contained
(see Figure 15).

Figure 15: Figure showing the Welch’s power spectral density of one segment (light blue),
the threshold value (red) and the selected frequency band (blue). The specified band for this
segment ranges from 7578 Hz to 8516 Hz.
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4.5 Short-time Fourier transform

The Short-time Fourier transform (STFT), is a modification of Fourier transform used to
determine the spectral content of local sections of a signal as it changes over time [23]. The
two-dimensional representation of squared magnitude of the STFT is called the spectro-
gram, which is a helpful visualization of the temporal evolution of the spectral content of the
analyzed signal.

The reason why this method is used is that the spectral values from obtained frequency
band of interest (see section 4.4) are projected from the spectrogram to the time axis by
summing the frequencies in the given band at a given time within one signal segment (see
section 4.3.2). After performing this operation, we get a kind of envelope of vibration pulses.

The STFT of a signal is calculated by sliding an analysis window of length M over the
signal and calculating the discrete Fourier transform of the windowed data (see Figure 16).
After analyzing the properties of different types of windows, the Hann window type was used
in this work. L specifies the length of overlap in samples. The overlap-adding of the windowed
segments compensates for the signal attenuation at the window edges. Thus, an undesirable
phenomenon called spectrum leakage is treated. The DFT of each windowed segment is added
to a matrix that contains the magnitude and phase for each point in time and frequency. The
number of rows in the STFT matrix equals the number of DFT points, and the number of
columns is given by

k =
⌊
N − L
M − L

⌋
(4.4)

where N is the length of the input signal x in samples,M is the window length, L specifies
the overlap-adding in samples.

The STFT matrix is defined as follows.

X(f) = [X1(f)X2(f)X3(f) · · ·Xk(f)] (4.5)

The m-th elemnt of the matrix X(f) is equal to

Xm(f) =
∞∑

n=−∞
x(n)g(n−mR)e−j2πfn (4.6)

where Xm(f) is the DFT of windowed data centered about time mR, g(n) is the window
function of length M , R is the hop size between successive DFTs. The hop size is defined as
R = M − L [23].
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Figure 16: Graphical representation of the described STFT algorithm leading to a two-
dimensional graphical representation of the squared magnitude of the STFT called the spec-
trogram [4]. x(n) is the input signal, g(n) is the window function of length M , L defines the
overlap in samples, the hop size between successive DFTs is defined as R = M − L.

4.5.1 Window length analysis

As mentioned in chapter 4.2, the window length is one of the critical parameters affecting
the resulting STFT value. Therefore, the following study was performed comparing the effect
of window length on the accuracy of the calculation of the value of the period of vibration
pulses. Due to this analysis, the optimal window length will be obtained.

The reason why the length of the window is so crucial is that the length of the window
in STFT calculation relates to how the signal is represented. It determines whether there is
good frequency resolution (frequency components close together can be separated) or good
time resolution (the time at which frequencies change). A wide window gives better frequency
resolution but poor time resolution. A narrower window gives good time resolution but poor
frequency resolution. This phenomenon can be observed in Figure 17.
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Figure 17: Illustration of the impact of window length on STFT time-frequency resolution. A
wide window gives better frequency resolution but poor time resolution (right). A narrower
window gives good time resolution but poor frequency resolution (left).

For the following analysis examining the optimal length of the STFT window, the most
dynamic signal from the created database with the following properties was selected:

• Fault type = Inner race fault,

• fstart = 40Hz,

• fstop = 5Hz,

• T = 3s,

• fs = 20000Hz,

• SNR = 20, 30, 60dB.

where fstart is the initial value of the shaft frequency speed fr, fstop is the frequency of fr at
the time of the signal duration T , SNR is the signal-to-noise ratio.

The comparison parameter was used to determine the correctness of determining the value
of the period of vibrational pulses. Thus, the difference between the values determined by the
proposed analysis and the values theoretically calculated (see equation (2.2)) using the Mean
squared error (MSE) metric was determined. Overlap parameter was set to 75% of window
length.
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Figure 18: Displayed analysis results to determine the optimal length of the STFT window.
For individual SNR values, the MSE value for a given STFT window length was plotted (the
smaller the MSE value, the better). blue = 16 samples length, orange = 32 samples length,
ocher = 64 samples length.

Window lengths of 8, 16, 32, 64 and 128 samples were considered for the analysis. But
after the analysis, the 8 and 128 sample windows were discarded due to too high MSE values,
which resulted in poorer readability of the graphical output of the analysis. The optimal
length of the STFT window of 32 samples is based on the results of the performed analysis
(see Figure 18). It would be possible to consider a window length of 16 samples, but due to
the greater noise robustness of the results with a window length of 32 samples, the length of
32 samples was chosen as the optimal length of the STFT window for the purposes of the
proposed signal analysis.

The figure 19 shows the impact of time-frequency resolution depending on the selected

35



length of the STFT window. The selected window length is always a compromise between a
more detailed frequency or more detailed time resolution.

Figure 19: Displayed spectrograms within one signal segment for window lengths of: a) 16,
b) 32, c) 64 samples. The warmer the color, the more energy there is at a given frequency.
X-axis = time [ms], Y-axis = frequency [kHz].

4.5.2 Overlap length analysis

Another critical parameter of the Short-time Fourier transform is the length of overlap of
individual STFT windows (see Figure 16). The analysis was performed on a similar principle
as in the analysis of the influence of the length of the STFT window on the analysis result. The
difference in this analysis was that the optimal value of the STFT window length is known
from the previous study, and it is equal to 32 samples. The parameter that was examined was
the length of the overlap of the STFT window. The values of such overlaps were chosen to be
16, 24, 28, and 31 samples.

The results of the performed analysis (see Figure 20) indicate the fact that an overlap of
31 samples (97% of the window length) is the best value for the purposes of plausibility of
the results of the performed signal analysis. Due to the lower value of the MSE metric, the
results determined from the analysis are more similar to the theoretically calculated results
than the results with a higher MSE value.
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Figure 20: Displayed analysis results to determine the optimal length of the STFT window
overlap. For individual SNR values, the MSE value for a given overlap length was plotted (the
smaller the MSE value, the better). blue = 16 samples length, orange = 24 samples length,
ocher = 28 samples length, purple = 31 samples length.

4.6 Fourier Synchrosqueezed transform

The time-frequency resolution (see section 4.5.1) limits the transformation of the Short-time
Fourier transform mentioned in the previous chapter. One of the approaches that try to solve
this problem is the Fourier Synchrosqueezed transform [24].

The synchrosqueezing is a post-processing method that circumvents the uncertainty rela-
tion inherent to the linear transform STFT, by reassigning the coefficients in scale or frequency
[30].

The aim of the FSST is threefold:
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• to sharpen a time-scale representation,

• to sharpen at frequency domain,

• remaining invertible.

Generated bearing fault signals can be expressed as a superposition of amplitude-modulated
and frequency-modulated modes. For time-frequency analysis, it is convenient to express such
signals as sums of analytic signals through

f(t) =
K∑
k=1

Ak(t)ej2πφk(t) (4.7)

where Ak are the instantaneous amplitudes and φk are the instantaneous phases.
The Fourier synchrosqueezed transform (FSST) is based on the short-time Fourier trans-

form of a fucntion f (see section 4.5) which is defined as follows

Vgf(t, η) =
∫ ∞
−∞

f(x)g(x− t)e−j2πη(x−t) dx (4.8)

where g represents the spectral window.
The STFT coefficients Vgf(t, η) are subsequently squeezed so that they concentrate around

curves of instantaneous frequency Ωgf(t, η) in the time-frequency plane (equation (4.10)).

Ωgf(t, η) = 1
j2π

∂
∂tVgf(t, η)
Vgf(t, η) (4.9)

This type of evaluation decreases the influence of the window [30].
The resulting synchrosqueezed transform is defined as follows.

Tgf(t, ω) =
∫ ∞
−∞

Vgf(t, η)δ(ω − Ωgf(t, η)) dη (4.10)

The Fourier Synchrosqueezed transform was performed in the Matlab® environment using
the fsst function, which has the following syntax.

[s,f,t] = fsst(x,fs,window(length);

• x is the input signal,

• fs is the sampling frequency (fs = 20000 Hz),

• window defines the window type and length of the window in samples (window =
hann(64)).
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The selected window length of 64 samples was the value that gave the best signal analysis
results. This value was determined from the same method of analysis to determine the optimal
window length as in the previous chapter Short-time Fourier transform (see chapter 4.5.1).
It is worth mentioning that the window overlay cannot be defined for the fsst function. This
is because this function is defined for a fixed parameter value that is equal to overlap =
windowLength− 1 in samples.

The output of the fsst function is the so-called fsstgram. It is a modified method of the
spectrogram. A comparison of the graphic outputs of Short-time Fourier transform (spectro-
gram) and Fourier Synchrosqueezed transform (fsstgram) is shown in the following figure 21.
It can be observed that the visible sharpening of the fsstgram in the frequency domain is
present.

Figure 21: A comparison between spectrogram (left) and fsstgram (right) within one segment.
X-axis = time [ms], Y-axis = frequency [kHz].
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4.7 Localization of pulses using the spectral region

Due to time-frequency analysis using STFT or FSST, we can project the spectral components
to the time axis. This gives us some form of the pulse envelope (see figure 22). Thanks to the
knowledge of the frequency band of interest from the chapter 4.4, we will limit the projection
of spectral components to this band thus this can be understood as a filtration in frequency
domain. The projection of spectral components to the time axis is given by the following
equation.

spulse(t) =
fhigh∑
i=flow

s(t, fi) tε〈0, T 〉 (4.11)

where s is the output of spectrogram or fsst function, t is the time duration of the analysed
segment, flow and fhigh are the frequencies defining the frequency band of interest which were
obtained from section 4.4.

Figure 22: Spectrogram of one segment with marked frequency band of interest (top). Pro-
jected spectral components to the timeline using the displayed spectrogram (bottom).
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Using the operation of integrating the resulting signal obtained by projecting the spectral
components to the time axis, we obtain one value corresponding to the surface of the resulting
envelope of each pulse. This results in the ability to determine the position of the pulse
over time unambiguously. It is important to mention that the integration operation takes
place from a set threshold (see Figure 23). This threshold was set to a base value equal to
threshold = Kmean(spulse)(t), whereKε R is a factor by which we can influence the threshold
value as needed depending on the degree of noise in the signal. The value of factor K was
chosen experimentally.

The resulting integration values are stored in a row vector for the purpose of continuously
storing these values for other signal segments.

Figure 23: Display of the time course of projection of spectral components to the time axis with
the marked threshold value for integration purposes (top). The resulting values of integration
(bottom).
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4.8 The fault frequency determination

After analyzing the last segment of the signal, it is possible to determine the distance between
the individual pulses, which corresponds to the time evolution of the period corresponding
to 1

BPF . The term BPF is intentionally given here because the specific type of fault is not
yet known, and therefore we cannot clearly determine whether it is an inner race fault or an
outer race fault.

After determining the length of the fault period, it was necessary to correct the resulting
data from incorrectly determined data. If the resulting period between two pulses was approx-
imately twice as long as the length of the previous period, it means that one pulse was not
detected. Therefore, the longer period was shortened to a value corresponding to the length
of the previous period, and at the same time, a new value of the period of the same length as
the previous period was added at position n+ 1, where n corresponds to the position of the
originally twice long period (see Figure 24). The resulting length of the vector containing all
the period length values was increased by one value by this step.

On the other hand, if a value significantly lower (approximately three times lower) ap-
peared in the resulting fault period vector than the previous value, this value was deleted,
and the resulting vector was shortened by one sample by this operation.

At this point, it was possible to compare the correctness of determining the time evolution
of the values of the fault frequency BPF corresponding to the value 1

BPFperiod
with the vector

corresponding to the generated fault frequency of individual pulses of the given signal. Mean
squared error (MSE) was determined as a metric to determine the similarity of the two signals
(see Figure 24).

It can be seen from the figure 24 that the detection of the development of the BPF
frequency is not error-free, but more or less tries to copy the course of the generated BPF
values. The accuracy of the determination depends on the degree of noise in the signal. Thus,
the smaller the SNR value, the less accurate the determination.
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Figure 24: Figure showing the correction of the determined period lengths corresponding to
1

BPF (top) and a comparison of the time evolution of the BPF frequency (red) with the
generated BPF values (blue) (bottom). The MSE value defines the similarity of the two
vectors, and thus the lower the MSE value, the similar these vectors are.

4.9 Determination of the fault type and shaft rotation speed
frequency

The advantage of the generated data is the fact that it was possible to store the development
values of the theoretically calculated BPFO and BPFI values (see equations (2.1) - (2.2))
depending on the change of the shaft rotation speed frequency.

Therefore, determining the type of defect is relatively straightforward. Using the MSE
metric, the theoretically calculated BPFI and BPFO values were compared with the deter-
mined values of the failure frequency of an unspecified BPF type (see chapter 4.8). The
resulting type of fault was therefore determined using the smaller of the two MSE values.
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Due to the knowledge of the fault type, specific bearing type, and the time evolution of
the fault frequency (BPFI or BPFO), we can calculate the course of the time evolution of the
shaft speed frequency fr by modifying the equations (2.1) - (2.2) as follows.

• fr determined using BPFO frequency = Outer race fault

fr = 2BPFO
(1− d

D )n
[Hz] (4.12)

• fr determined using BPFI frequency = Inner race fault

fr = 2BPFI
(1 + d

D )n
[Hz] (4.13)

where fr is the shaft speed frequency in Hz, BPFO or BPFI are the determined fault
frequencies of specified fault type in Hz, d is the rolling element diameter, D is the pitch
diameter and n is the number of rolling elements.

The resulting time course of the determined shaft speed frequency and the generated shaft
speed frequency can be seen in the figure 25.

Figure 25: The determined time evolution of the shaft speed frequency using BPFI (red)
compared to the time evolution of the generated shaft speed frequency (blue).
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The Figure 25 was generated for method control purposes. It can be seen that the results
of determining the shaft speed frequency value over time correspond to some extent to the
generated values. A certain deviation occurs at lower frequencies, when there is a smaller
number of pulses within a segment with a length of 2000 samples and thanks to that the
method is less accurate.

In order to demonstrate a better result of determining the time evolution of the BPF
fault frequency, the following figure 26 was added to this work. The type of bearing fault
analyzed here is the outer race fault, which is a better detectable fault using the proposed
detection method, as the next chapter shows (see chapter 5). Compared to the figure 24, it is
both visually and numerically (MSE value) justified that determining the course of the BPF
error frequency is better for the case of the figure because the determined course more closely
copies the course of the generated value.

Figure 26: Outer race fault. A comparison of the time evolution of the BPF frequency (red)
with thegenerated BPF values (blue). The MSE value defines the similarity of the twovectors,
and thus the lower the MSE value, the similar these vectors are.
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Chapter 5

Signal analysis of the created
non-stationary bearing fault
database

This chapter briefly discusses the application of the developed method of signal analysis for
bearing fault detection under non-stationary conditions. Generated signals from the created
non-stationary bearing fault database (see 3.5) were used as input data to the signal analysis.
Primarily, this chapter is intended to compare the results of the two methods used, which are
spectrogram and fsstgram (see Figures 27 - 32).

The signal analysis procedure was divided into four categories according to the type of
fault and the type of transformation that was used.

Division by the fault type:

• Outer race fault,

• Inner race fault,

Division by the transformation type:

• Short-time fourier transform (spectrogram),

• Fourier Synchrosqueezed transform (fsstgram),

The signals from created database were analyzed according to the algorithm described in
the chapter 4. The result of the analysis, which is a determination of the time evolution of
the fault frequency (BPF), was compared with the expected result of the time evolution of
the BPF from the signal generator. The Mean squared error metric was used as a metric to
compare the similarity of these signals (see chapter 4.8).
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A complete description of signals from the non-stationary signal database can be found
in the Attachments section in the tables 6.1 - 6.2. Likewise, the results of the analysis of this
database can be found in the Attachments section in the form of bar graphs 27 - 32.

From the results of the analysis we can determine two basic conclusions, which must be
understood as conclusions related only to the form used of all created methods and algorithms,
but not as generally valid conclusions.

First, the fsstgram method is less suitable for bearing fault detection than the spectrogram
method due to its lower robustness to noise interference. From the resulting graphical outputs
(see Figures 27 - 32) it can be seen that the Mean squared error (MSE) value increases very
steeply with decreasing SNR level. However, at high SNR values, both methods, spectrogram
and fsstgram, give similar results, especially for the bearing fault detection in case of outer
race fault.

Second, detecting the inner race faults is more difficult than detecting outer race faults.
This is caused primarily by the presence of amplitude modulation in the signal in which the
inner race fault type occurs. Pulses that have a very reduced amplitude due to amplitude
modulation are easily lost in the noise-affected area. This makes it impossible to successfully
detect all pulses at lower SNR values. In contrast, the detection of an outer race fault is
relatively successful for both types of methods used. However, even here the rule applies that
the fsstgram method is less robust to additive noise at lower SNR values than the spectrogram
method.
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Chapter 6

Conclusion

All set points in the thesis assignment were met.
In the chapter 2, the reader was introduced to the issue of the origin and detection of

bearing faults. Individual types of bearings and individual types of bearing faults were men-
tioned. The principle of detection of these faults was described, and the illustrative course
of signals of individual types of bearing faults was shown. At the end of the chapter 2, the
procedure for determining the frequency of the fault depending on the shaft speed frequency
is mentioned.

In the following chapter 3, a generator of non-stationary bearing fault signals was created.
Using the analysis of available databases, the necessary parameters to create relevant signals
were determined. In particular, it is a time constant τ , which was set to the value τ = 0.0005
s. Another important parameter determined is the resonant frequency of the system fc, which
was set to the value fc = 8000 Hz. These values were used to generate Inner race fault
and Outer race fault signals. Nonstationarity was modeled using a time change of shaft speed
frequency. A bearing deceleration scenario was used. The Non-stationary Bearing Fault Signal
Database was created using a bearing fault signal generator. This database was created and
described for experimental purposes.

In Chapter 4, an algorithm of the developed method was created in order to detect bear-
ing faults under non-stationary conditions. This algorithm is described using a block diagram
(see Figure 10). The individual methods that were used are described in more detail, and the
selected parameters of these methods are mentioned. The method known as the Kurtogram
was used to determine the optimal parameters of the analyzing methods. These methods are
namely spectrogram and fsstgram. The selection of other input parameters of these methods
is discussed in more detail and, in most cases, is based on the analysis of different parameter
values in order to determine the optimal values. Using the proposed method of fault detec-
tion, the characteristic vibration pulses of these faults were detected. Subsequently, the time
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evolution of the BPF fault frequency was determined, and the type of fault was determined.
Thanks to the knowledge of the mathematical relationships between the shaft frequency speed
and the fault frequency of the given type, which were mentioned in Chapter 2, the time course
of the shaft speed frequency was determined.

In the last chapter, an analysis was performed using the proposed method (see Chapter 4)
in order to compare the spectrogram and fsstgram methods used. Generated signals from The
Non-stationary Bearing Fault Signal Database were used as input data. All analysis results
can be found in the Attachments section in the form of bar graphs (see Figure 27 - 32). Due
to the good readability of the graphs, it is necessary to pay attention to the scale of the
plotted graphs. Two conclusions can be drawn from the results, which, however, should not
be perceived as a general truth. First, less robustness of the fsstgram method to additive noise
can be observed at lower SNR values. Second, detecting an inner race fault is more complex
than detecting an outer race fault. This is caused by the presence of amplitude modulation
in the signal containing this type of fault. As a result, pulses with small amplitude are lost in
the noise-affected area and therefore cannot be detected.

The author sees an option for future expansion or improvement of this work, mainly in the
improvement of the signal analysis method for the purpose of detecting bearing failures under
non-stationary conditions. Better results would be achieved by improving the functionality of
the Kurtogram method even at lower SNR values. Furthermore, the author sees the possibility
of improvement in determining the integration threshold in an automatic way. This would
lead to complete automation of the algorithm.
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Attachments

Figure 27: OUTER race fault fstart = 40 Hz. Comparison of analysis results in order to
compare spectrogram and fsstgram methods.
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Figure 28: OUTER race fault fstart = 30 Hz. Comparison of analysis results in order to
compare spectrogram and fsstgram methods.
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Figure 29: OUTER race fault fstart = 20 Hz. Comparison of analysis results in order to
compare spectrogram and fsstgram methods.
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Figure 30: INNER race fault fstart = 40 Hz. Comparison of analysis results in order to
compare spectrogram and fsstgram methods.
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Figure 31: INNER race fault fstart = 30 Hz. Comparison of analysis results in order to
compare spectrogram and fsstgram methods.

57



Figure 32: INNER race fault fstart = 20 Hz. Comparison of analysis results in order to
compare spectrogram and fsstgram methods.
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File name Fault type
fstart
[Hz]

fstop
[Hz]

T
[s]

SNR
[dB]

OUTER_40Hz_15Hz_3s_60

OUTER
RACE
FAULT

40 15 3 60
OUTER_40Hz_15Hz_3s_30 40 15 3 30
OUTER_40Hz_15Hz_3s_20 40 15 3 20
OUTER_40Hz_10Hz_3s_60 40 10 3 60
OUTER_40Hz_10Hz_3s_30 40 10 3 30
OUTER_40Hz_10Hz_3s_20 40 10 3 20
OUTER_40Hz_5Hz_3s_60 40 5 3 60
OUTER_40Hz_5Hz_3s_30 40 5 3 30
OUTER_40Hz_5Hz_3s_20 40 5 3 20
OUTER_30Hz_15Hz_3s_60 30 15 3 60
OUTER_30Hz_15Hz_3s_30 30 15 3 30
OUTER_30Hz_15Hz_3s_20 30 15 3 20
OUTER_30Hz_10Hz_3s_60 30 10 3 60
OUTER_30Hz_10Hz_3s_30 30 10 3 30
OUTER_30Hz_10Hz_3s_20 30 10 3 20
OUTER_30Hz_5Hz_3s_60 30 5 3 60
OUTER_30Hz_5Hz_3s_30 30 5 3 30
OUTER_30Hz_5Hz_3s_20 30 5 3 20
OUTER_20Hz_15Hz_3s_60 20 15 3 60
OUTER_20Hz_15Hz_3s_30 20 15 3 30
OUTER_20Hz_15Hz_3s_20 20 15 3 20
OUTER_20Hz_10Hz_3s_60 20 10 3 60
OUTER_20Hz_10Hz_3s_30 20 10 3 30
OUTER_20Hz_10Hz_3s_20 20 10 3 20
OUTER_20Hz_5Hz_3s_60 20 5 3 60
OUTER_20Hz_5Hz_3s_30 20 5 3 30
OUTER_20Hz_5Hz_3s_20 20 5 3 20

Table 6.1: The following table describes the generated signal database with the basic descrip-
tive parameters of the signals.
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File name Fault type
fstart
[Hz]

fstop
[Hz]

T
[s]

SNR
[dB]

INNER_40Hz_15Hz_3s_60

INNER
RACE
FAULT

40 15 3 60
INNER_40Hz_15Hz_3s_30 40 15 3 30
INNER_40Hz_15Hz_3s_20 40 15 3 20
INNER_40Hz_10Hz_3s_60 40 10 3 60
INNER_40Hz_10Hz_3s_30 40 10 3 30
INNER_40Hz_10Hz_3s_20 40 10 3 20
INNER_40Hz_5Hz_3s_60 40 5 3 60
INNER_40Hz_5Hz_3s_30 40 5 3 30
INNER_40Hz_5Hz_3s_20 40 5 3 20
INNER_30Hz_15Hz_3s_60 30 15 3 60
INNER_30Hz_15Hz_3s_30 30 15 3 30
INNER_30Hz_15Hz_3s_20 30 15 3 20
INNER_30Hz_10Hz_3s_60 30 10 3 60
INNER_30Hz_10Hz_3s_30 30 10 3 30
INNER_30Hz_10Hz_3s_20 30 10 3 20
INNER_30Hz_5Hz_3s_60 30 5 3 60
INNER_30Hz_5Hz_3s_30 30 5 3 30
INNER_30Hz_5Hz_3s_20 30 5 3 20
INNER_20Hz_15Hz_3s_60 20 15 3 60
INNER_20Hz_15Hz_3s_30 20 15 3 30
INNER_20Hz_15Hz_3s_20 20 15 3 20
INNER_20Hz_10Hz_3s_60 20 10 3 60
INNER_20Hz_10Hz_3s_30 20 10 3 30
INNER_20Hz_10Hz_3s_20 20 10 3 20
INNER_20Hz_5Hz_3s_60 20 5 3 60
INNER_20Hz_5Hz_3s_30 20 5 3 30
INNER_20Hz_5Hz_3s_20 20 5 3 20

Table 6.2: The following table describes the generated signal database with the basic descrip-
tive parameters of the signals.
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